UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / __2021

SUBJECT No. 1
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.735+\mathrm{j} \cdot 1.035$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.25 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.1 \mathrm{~dB}$. If the input power is 1.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.323+\mathrm{j} \cdot 0.314$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.90 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.3	11.6	6.5	8.0
Noise Factor $[\mathrm{dB}]$	0.92	1.23	0.50	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.4	0.659	-142.0°	0.056	34.0°	9.549	90.3°	0.248	-96.6°
3.1	0.633	155.9°	0.099	24.3°	4.452	48.0°	0.295	147.4°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 2
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.190+\mathrm{j} \cdot 1.110$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.25 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.2 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.5 \mathrm{~dB}$. If the input power is 2.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.296+\mathrm{j} \cdot 0.365$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.60 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.4	10.5	5.8	7.4
Noise Factor $[\mathrm{dB}]$	0.97	1.28	0.53	0.84

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.1	0.975	-20.4°	0.010	79.4°	26.054	167.1°	0.263	-27.6°
1.5	0.973	-27.7°	0.020	71.2°	6.251	152.1°	0.536	-21.9°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 3
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.260-j \cdot 0.850$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=4.85 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.1 \mathrm{~dB}$. If the input power is 1.15 mW compute the output power (in $\mathbf{~ m W}$) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.272+\mathrm{j} \cdot 0.688$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.35 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.3	10.2	5.8	8.2
Noise Factor $[\mathrm{dB}]$	1.05	1.20	0.57	0.78

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
3.1	0.605	161.6°	0.081	22.1°	4.816	49.4°	0.116	-140.7°
2.0	0.958	-36.5°	0.026	65.5°	6.157	143.4°	0.532	-28.6°

a) Perform the μ^{\prime}-test at both frequencies. (1.5p)
b) At which of the two frequencies the transistor has better stability? (0.5p)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 4
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.045-\mathrm{j} \cdot 0.955$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.25 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.4 \mathrm{~dB}$. If the input power is 1.80 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.186+\mathrm{j} \cdot 0.223$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.05 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.0	11.2	5.7	8.6
Noise Factor $[\mathrm{dB}]$	1.04	1.18	0.66	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.5	0.611	178.5°	0.072	26.6°	5.838	62.6°	0.150	-122.6°
3.2	0.917	-56.8°	0.039	52.5°	5.870	123.1°	0.520	-44.1°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / __2021

SUBJECT No. 5
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.225+\mathrm{j} \cdot 1.045$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.50 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.9 \mathrm{~dB}$. If the input power is 1.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.468+\mathrm{j} \cdot 0.605$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 17.15 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.9	11.6	6.9	8.6
Noise Factor $[\mathrm{dB}]$	0.93	1.20	0.64	0.71

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.5	0.804	-85.9°	0.036	53.3°	18.449	126.8°	0.288	-104.9°
2.1	0.955	-38.2°	0.027	64.5°	6.134	141.8°	0.531	-30.0°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 6
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.800-\mathrm{j} \cdot 1.065$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.85 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.9 \mathrm{~dB}$. If the input power is 2.60 mW compute the output power (in $\mathbf{~ m W}$) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.184+\mathrm{j} \cdot 0.176$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.45 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.3	10.3	6.1	7.5
Noise Factor $[\mathrm{dB}]$	0.94	1.24	0.66	0.89

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.2	0.683	-141.3°	0.055	40.7°	10.171	94.3°	0.303	-153.5°
2.8	0.932	-50.1°	0.035	56.7°	5.965	129.8°	0.524	-39.0°

a) Perform the μ^{\prime}-test at both frequencies. (1.5p)
b) At which of the two frequencies the transistor has better stability? (0.5p)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / __2021

SUBJECT No. 7
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.035+\mathrm{j} \cdot 0.745$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=5.50 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$. If the input power is 4.05 mW compute the output power (in $\mathbf{~ m W}$) ($\mathbf{2 p}$)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.699+\mathrm{j} \cdot 0.258$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 13.60 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.0	11.4	5.2	7.2
Noise Factor $[\mathrm{dB}]$	1.00	1.19	0.52	0.74

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.8	0.632	-158.4°	0.062	31.2°	7.749	79.3°	0.204	-106.5°
3.5	0.903	-61.7°	0.042	49.2°	5.787	118.1°	0.515	-47.9°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 8
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.970+\mathrm{j} \cdot 1.190$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.20 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.3 \mathrm{~dB}$. If the input power is 3.10 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.296+\mathrm{j} \cdot 0.359$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.60 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.5	11.1	5.7	8.8
Noise Factor $[\mathrm{dB}]$	0.95	1.25	0.54	0.79

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.8	0.632	163.7°	0.092	27.5°	4.903	54.4°	0.289	156.0°
0.8	0.991	-15.0°	0.011	79.8°	6.380	164.8°	0.541	-11.9°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 9
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.945-\mathrm{j} \cdot 1.160$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.30 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.5 \mathrm{~dB}$. If the input power is 2.90 mW compute the output power (in $\mathbf{~ m W}$) ($\mathbf{2 p}$)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.119+\mathrm{j} \cdot 0.398$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.95 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.3	10.9	5.6	8.5
Noise Factor $[\mathrm{dB}]$	0.94	1.15	0.66	0.86

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.8	0.649	-166.0°	0.069	36.5°	7.248	77.5°	0.294	-174.9°
2.5	0.942	-45.1°	0.032	60.0°	6.035	134.9°	0.527	-35.2°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 10
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.980+\mathrm{j} \cdot 0.740$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.05 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.7 \mathrm{~dB}$. If the input power is 1.60 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.065+\mathrm{j} \cdot 0.637$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.35 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.3	10.2	6.9	7.4
Noise Factor $[\mathrm{dB}]$	0.91	1.20	0.64	0.89

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.6	0.644	-150.9°	0.059	32.5°	8.540	84.6°	0.224	-101.8°
4.1	0.875	-70.9°	0.048	43.2°	5.623	108.5°	0.507	-55.0°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 11
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.750+\mathrm{j} \cdot 1.105$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.60 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$. If the input power is 3.20 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.713+\mathrm{j} \cdot 0.180$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.40 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.7	10.6	6.0	8.3
Noise Factor $[\mathrm{dB}]$	0.99	1.18	0.65	0.77

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.4	0.669	-150.5°	0.060	39.2°	8.971	88.2°	0.300	-161.3°
2.4	0.946	-43.4°	0.031	61.0°	6.060	136.5°	0.528	-33.9°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 12
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.750-\mathrm{j} \cdot 0.940$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=4.70 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.2 \mathrm{~dB}$. If the input power is 3.95 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.379+\mathrm{j} \cdot 0.251$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.60 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.0	10.8	6.0	8.0
Noise Factor $[\mathrm{dB}]$	0.97	1.13	0.51	0.83

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.6	0.657	-158.9°	0.064	37.8°	8.005	82.7°	0.297	-168.2°
2.6	0.939	-46.8°	0.033	58.8°	6.006	133.2°	0.526	-36.4°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 13
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.890-\mathrm{j} \cdot 0.950$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.25 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.9 \mathrm{~dB}$. If the input power is 3.25 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.062+\mathrm{j} \cdot 0.446$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.65 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.2	10.1	5.3	7.1
Noise Factor $[\mathrm{dB}]$	1.00	1.21	0.59	0.70

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.2	0.677	-132.4°	0.053	35.9°	10.785	96.6°	0.275	-90.6°
3.8	0.889	-66.6°	0.045	46.2°	5.708	113.2°	0.512	-51.4°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 14
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.830-\mathrm{j} \cdot 0.955$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.10 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.4 \mathrm{~dB}$. If the input power is 2.55 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.006+\mathrm{j} \cdot 0.340$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.70 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.4	10.5	5.1	8.1
Noise Factor $[\mathrm{dB}]$	1.04	1.25	0.62	0.77

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.1	0.688	-126.4°	0.051	37.4°	11.536	100.2°	0.290	-87.1°
3.0	0.925	-53.4°	0.037	54.7°	5.917	126.5°	0.523	-41.6°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 15
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.795-\mathrm{j} \cdot 0.735$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.15 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.0 \mathrm{~dB}$. If the input power is 2.85 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.210+\mathrm{j} \cdot 0.145$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.10 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.0	11.9	6.7	7.8
Noise Factor $[\mathrm{dB}]$	1.03	1.24	0.67	0.71

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.2	0.639	-179.3°	0.078	33.3°	6.081	67.7°	0.291	173.3°
3.2	0.635	153.4°	0.101	23.3°	4.316	46.0°	0.299	145.0°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 16
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.810-\mathrm{j} \cdot 0.770$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.55 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.6 \mathrm{~dB}$. If the input power is 3.75 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.099+\mathrm{j} \cdot 0.092$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.30 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.0	10.7	5.0	7.7
Noise Factor $[\mathrm{dB}]$	1.00	1.25	0.52	0.71

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.2	0.927	-38.9°	0.019	71.3°	24.719	155.1°	0.276	-51.0°
3.0	0.634	158.5°	0.096	25.5°	4.590	50.1°	0.293	150.2°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.17
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.105-\mathrm{j} \cdot 1.140$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=4.30 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.0 \mathrm{~dB}$. If the input power is 1.75 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.065+\mathrm{j} \cdot 0.107$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.70 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.9	11.4	5.9	7.1
Noise Factor $[\mathrm{dB}]$	1.03	1.29	0.68	0.83

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.2	0.618	-172.5°	0.068	28.5°	6.540	69.3°	0.173	-115.3°
3.1	0.922	-55.1°	0.038	53.5°	5.898	124.8°	0.521	-43.0°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 18
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.810-\mathrm{j} \cdot 1.140$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.60 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.8 \mathrm{~dB}$. If the input power is 3.45 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.503+\mathrm{j} \cdot 0.257$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.30 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.2	10.9	5.0	7.0
Noise Factor $[\mathrm{dB}]$	1.03	1.14	0.55	0.79

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.8	0.732	-115.8°	0.046	45.4°	13.834	109.6°	0.302	-132.4°
1.0	0.987	-18.7°	0.014	77.3°	6.344	161.1°	0.539	-14.8°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 19
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.765+j \cdot 1.005$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.80 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.4 \mathrm{~dB}$. If the input power is 4.05 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.281+\mathrm{j} \cdot 0.668$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.80 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.1	10.3	5.6	7.1
Noise Factor $[\mathrm{dB}]$	0.92	1.27	0.51	0.70

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.9	0.608	166.9°	0.078	23.6°	5.117	53.7°	0.126	-133.7°
1.8	0.965	-32.9°	0.024	68.0°	6.192	146.9°	0.533	-25.9°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 20
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.230-\mathrm{j} \cdot 0.950$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=4.40 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.9 \mathrm{~dB}$. If the input power is 3.75 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.193+\mathrm{j} \cdot 0.052$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.70 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.6	10.5	6.0	7.3
Noise Factor $[\mathrm{dB}]$	0.98	1.18	0.58	0.75

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.1	0.690	-135.6°	0.053	41.7°	10.915	97.7°	0.303	-149.2°
1.1	0.983	-20.6°	0.015	76.1°	6.317	159.3°	0.539	-16.2°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 21
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.960-\mathrm{j} \cdot 0.850$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.50 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.3 \mathrm{~dB}$. If the input power is 1.10 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.367+\mathrm{j} \cdot 0.183$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.50 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.8	10.6	6.5	7.3
Noise Factor $[\mathrm{dB}]$	0.92	1.17	0.53	0.75

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.3	0.666	-137.6°	0.054	34.9°	10.124	93.4°	0.259	-94.0°
1.7	0.968	-31.2°	0.023	69.1°	6.210	148.7°	0.534	-24.6°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 22
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.205-\mathrm{j} \cdot 1.270$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.00 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.8 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.0 \mathrm{~dB}$. If the input power is 3.30 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.606+\mathrm{j} \cdot 0.132$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.40 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.4	11.4	5.1	8.8
Noise Factor $[\mathrm{dB}]$	0.93	1.24	0.58	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.0	0.702	-129.9°	0.051	42.7°	11.753	101.3°	0.304	-144.3°
3.3	0.636	151.1°	0.103	22.2°	4.193	43.9°	0.302	142.2°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 23
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.195+\mathrm{j} \cdot 0.920$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.55 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.0 \mathrm{~dB}$. If the input power is 3.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.334+\mathrm{j} \cdot 0.212$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.65 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.9	11.7	5.5	8.3
Noise Factor $[\mathrm{dB}]$	1.05	1.15	0.52	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.1	0.640	-175.9°	0.076	34.2°	6.341	70.2°	0.289	176.1°
3.6	0.899	-63.3°	0.043	48.4°	5.763	116.5°	0.515	-49.0°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 24
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.100+\mathrm{j} \cdot 1.285$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.70 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.1 \mathrm{~dB}$. If the input power is 3.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.415+\mathrm{j} \cdot 0.337$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.25 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.2	11.7	6.2	7.2
Noise Factor $[\mathrm{dB}]$	0.91	1.19	0.57	0.84

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
3.0	0.607	164.2°	0.080	22.9°	4.960	51.5°	0.121	-137.5°
2.3	0.949	-41.7°	0.030	62.3°	6.082	138.2°	0.529	-32.7°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 25
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.035+\mathrm{j} \cdot 0.820$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=6.40 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.4 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.6 \mathrm{~dB}$. If the input power is 1.20 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.658+\mathrm{j} \cdot 0.359$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.40 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.3	10.2	5.9	7.3
Noise Factor $[\mathrm{dB}]$	0.99	1.23	0.60	0.81

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.5	0.663	-154.6°	0.062	38.6°	8.464	85.4°	0.299	-165.0°
4.6	0.847	-79.1°	0.051	38.2°	5.480	100.2°	0.498	-60.5°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 26
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.720+\mathrm{j} \cdot 1.235$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.95 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$. If the input power is 1.75 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.351+\mathrm{j} \cdot 0.499$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.80 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.5	10.7	5.8	8.2
Noise Factor $[\mathrm{dB}]$	0.90	1.20	0.60	0.84

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.9	0.648	-169.5°	0.071	35.7°	6.923	74.9°	0.291	-177.6°
2.7	0.935	-48.5°	0.034	57.7°	5.983	131.4°	0.525	-37.8°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 27
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.220-\mathrm{j} \cdot 0.980$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.75 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.7 \mathrm{~dB}$. If the input power is 3.90 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.498+\mathrm{j} \cdot 0.110$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 14.95 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.3	11.9	6.1	7.3
Noise Factor $[\mathrm{dB}]$	0.99	1.10	0.65	0.74

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.7	0.752	-107.3°	0.043	47.4°	15.166	114.5°	0.300	-125.0°
4.5	0.854	-77.6°	0.051	39.2°	5.506	101.9°	0.499	-59.4°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 28
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.095+\mathrm{j} \cdot 1.065$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.45 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.1 \mathrm{~dB}$. If the input power is 2.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.018+\mathrm{j} \cdot 0.720$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.30 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.6	10.0	6.5	7.0
Noise Factor $[\mathrm{dB}]$	0.93	1.16	0.67	0.78

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.0	0.644	-172.8°	0.074	35.0°	6.621	72.6°	0.290	179.4°
0.9	0.989	-16.9°	0.012	78.8°	6.361	162.9°	0.541	-13.4°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 29
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.010-\mathrm{j} \cdot 1.015$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.70 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.8 \mathrm{~dB}$. If the input power is 2.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.485+\mathrm{j} \cdot 0.279$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.10 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.3	11.0	5.3	8.6
Noise Factor $[\mathrm{dB}]$	1.08	1.28	0.64	0.76

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.3	0.637	178.1°	0.081	32.5°	5.846	65.5°	0.288	170.1°
1.2	0.981	-22.3°	0.016	74.9°	6.307	157.5°	0.538	-17.6°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.30
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.260+\mathrm{j} \cdot 1.295$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=6.15 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.7 \mathrm{~dB}$. If the input power is 2.85 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.072+\mathrm{j} \cdot 0.459$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.35 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.9	11.1	6.4	7.6
Noise Factor $[\mathrm{dB}]$	0.94	1.27	0.67	0.79

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.5	0.651	-146.5°	0.057	33.3°	9.008	87.4°	0.235	-99.5°
5.0	0.821	-85.2°	0.054	34.5°	5.345	94.1°	0.487	-64.8°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.31
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.120-\mathrm{j} \cdot 1.025$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.35 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.5 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.3 \mathrm{~dB}$. If the input power is 4.05 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.066+\mathrm{j} \cdot 0.323$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.65 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.5	11.8	5.7	7.8
Noise Factor $[\mathrm{dB}]$	0.99	1.12	0.67	0.72

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.7	0.655	-162.5°	0.067	37.2°	7.606	80.1°	0.296	-171.5°
4.9	0.828	-83.7°	0.054	35.5°	5.363	95.7°	0.489	-63.8°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.32
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.925-\mathrm{j} \cdot 0.760$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.95 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.7 \mathrm{~dB}$. If the input power is 1.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.093+\mathrm{j} \cdot 0.067$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 17.25 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.8	10.7	6.8	7.9
Noise Factor $[\mathrm{dB}]$	1.06	1.20	0.56	0.72

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.0	0.624	-165.6°	0.065	29.8°	7.078	74.2°	0.188	-110.9°
2.2	0.951	-40.0°	0.029	63.2°	6.093	140.1°	0.530	-31.2°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.33
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.095-\mathrm{j} \cdot 0.755$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.55 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.2 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.4 \mathrm{~dB}$. If the input power is 1.95 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.623+\mathrm{j} \cdot 0.246$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.65 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.6	10.2	6.0	7.8
Noise Factor $[\mathrm{dB}]$	1.08	1.18	0.55	0.71

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.4	0.867	-72.4°	0.032	58.1°	20.587	135.0°	0.292	-88.8°
5.3	0.801	-89.7°	0.056	31.8°	5.244	89.7°	0.479	-67.9°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.34
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.005+\mathrm{j} \cdot 1.000$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=6.60 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.3 \mathrm{~dB}$. If the input power is 1.20 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.077+\mathrm{j} \cdot 0.311$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.90 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.6	11.0	6.4	8.6
Noise Factor $[\mathrm{dB}]$	1.09	1.22	0.63	0.82

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.3	0.615	-175.3°	0.069	27.9°	6.276	67.1°	0.164	-117.7°
4.0	0.880	-69.8°	0.047	44.2°	5.654	109.9°	0.509	-53.8°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.35
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.135+\mathrm{j} \cdot 0.885$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.90 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.6 \mathrm{~dB}$. If the input power is 1.25 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.191+\mathrm{j} \cdot 0.767$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.85 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.8	10.3	6.7	8.7
Noise Factor $[\mathrm{dB}]$	1.08	1.12	0.62	0.73

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.8	0.606	169.7°	0.077	24.4°	5.280	55.8°	0.132	-130.5°
1.3	0.979	-24.1°	0.017	73.6°	6.284	155.7°	0.538	-19.1°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.36
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.725-\mathrm{j} \cdot 0.960$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.20 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.0 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.3 \mathrm{~dB}$. If the input power is 2.50 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.093+\mathrm{j} \cdot 0.068$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.85 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.2	10.0	6.3	8.5
Noise Factor $[\mathrm{dB}]$	0.92	1.15	0.66	0.74

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.9	0.630	-162.1°	0.063	30.4°	7.400	76.6°	0.197	-108.6°
4.8	0.834	-82.2°	0.053	36.3°	5.422	97.4°	0.492	-62.7°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.37
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.920-\mathrm{j} \cdot 0.915$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.50 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.9 \mathrm{~dB}$. If the input power is 1.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.088+\mathrm{j} \cdot 0.785$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.05 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.1	11.2	6.9	8.5
Noise Factor $[\mathrm{dB}]$	1.02	1.20	0.53	0.77

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.7	0.607	172.7°	0.075	25.1°	5.459	58.1°	0.138	-127.6°
3.3	0.912	-58.4°	0.040	51.4°	5.839	121.5°	0.518	-45.4°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.38
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.010-\mathrm{j} \cdot 0.865$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.35 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.8 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.8 \mathrm{~dB}$. If the input power is 2.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.318+\mathrm{j} \cdot 0.652$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.75 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.4	10.4	5.7	7.1
Noise Factor $[\mathrm{dB}]$	0.96	1.21	0.61	0.73

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.5	0.635	172.1°	0.085	30.6°	5.424	61.1°	0.289	164.4°
1.6	0.971	-29.5°	0.021	70.1°	6.231	150.4°	0.535	-23.2°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.39
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.175-\mathrm{j} \cdot 0.910$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.25 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.2 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$. If the input power is 1.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.444+\mathrm{j} \cdot 0.229$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 17.50 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.7	11.3	6.6	8.9
Noise Factor $[\mathrm{dB}]$	0.99	1.15	0.60	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.6	0.609	175.7°	0.074	25.8°	5.644	60.3°	0.143	-124.6°
4.3	0.866	-74.3°	0.049	41.2°	5.588	105.1°	0.504	-57.3°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 40
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.950+\mathrm{j} \cdot 1.240$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.70 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.2 \mathrm{~dB}$. If the input power is 2.10 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.020+\mathrm{j} \cdot 0.209$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 17.15 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.0	11.5	6.0	8.3
Noise Factor $[\mathrm{dB}]$	1.05	1.22	0.65	0.77

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.3	0.676	-146.2°	0.058	40.0°	9.523	91.2°	0.303	-158.0°
1.9	0.962	-34.7°	0.025	66.6°	6.173	145.1°	0.533	-27.3°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.41
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.720+\mathrm{j} \cdot 1.115$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.00 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.4 \mathrm{~dB}$. If the input power is 1.65 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.338+\mathrm{j} \cdot 0.327$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.55 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.4	10.0	6.9	8.8
Noise Factor $[\mathrm{dB}]$	0.98	1.17	0.65	0.86

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.9	0.717	-123.4°	0.049	43.9°	12.733	105.2°	0.303	-138.8°
3.7	0.887	-64.7°	0.044	47.1°	5.701	114.8°	0.512	-50.2°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.42
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.985-\mathrm{j} \cdot 1.175$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $C=6.35 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=8.8 \mathrm{~dB}$ and $\mathrm{G}_{2}=10.7 \mathrm{~dB}$. If the input power is 1.25 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.097+\mathrm{j} \cdot 0.071$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.90 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.7	11.1	6.9	7.3
Noise Factor $[\mathrm{dB}]$	0.97	1.17	0.62	0.87

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1.7	0.639	-154.8°	0.060	31.8°	8.124	81.8°	0.215	-104.3°
4.7	0.841	-80.7°	0.052	37.3°	5.454	98.7°	0.494	-61.6°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.43
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.745-\mathrm{j} \cdot 0.835$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.45 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.5 \mathrm{~dB}$. If the input power is 1.10 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.308+\mathrm{j} \cdot 0.105$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.90 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.9	10.9	6.6	8.5
Noise Factor $[\mathrm{dB}]$	1.02	1.26	0.50	0.75

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.7	0.632	166.6°	0.090	28.5°	5.067	56.6°	0.289	158.8°
4.4	0.859	-76.1°	0.050	40.1°	5.535	103.6°	0.503	-58.3°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No. 44
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.280+\mathrm{j} \cdot 1.205$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.30 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=6.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.3 \mathrm{~dB}$. If the input power is 3.45 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.262+\mathrm{j} \cdot 0.099$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.45 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.8	10.6	6.6	8.2
Noise Factor $[\mathrm{dB}]$	0.90	1.23	0.58	0.89

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.6	0.634	169.4°	0.088	29.6°	5.243	58.8°	0.287	161.4°
2.9	0.927	-51.8°	0.036	55.9°	5.938	128.1°	0.524	-40.4°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.45
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.910-\mathrm{j} \cdot 1.295$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.85 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=7.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.3 \mathrm{~dB}$. If the input power is 1.20 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=-0.345+\mathrm{j} \cdot 0.191$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.35 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.9	11.6	6.2	8.1
Noise Factor $[\mathrm{dB}]$	1.01	1.25	0.64	0.70

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.6	0.777	-97.5°	0.040	50.0°	16.735	120.2°	0.295	-115.2°
3.4	0.909	-60.1°	0.041	50.4°	5.817	119.8°	0.518	-46.5°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.46
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.125-\mathrm{j} \cdot 1.015$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.20 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.7 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.7 \mathrm{~dB}$. If the input power is 2.30 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.043+\mathrm{j} \cdot 0.433$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.40 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.1	10.5	5.6	8.4
Noise Factor $[\mathrm{dB}]$	0.95	1.11	0.64	0.70

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.3	0.901	-57.5°	0.026	63.8°	22.663	144.2°	0.282	-72.6°
5.1	0.814	-86.7°	0.055	33.5°	5.323	92.6°	0.484	-65.9°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.47
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.090+\mathrm{j} \cdot 1.290$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.70 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.1 \mathrm{~dB}$ and $\mathrm{G}_{2}=8.7 \mathrm{~dB}$. If the input power is 2.15 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.470+\mathrm{j} \cdot 0.539$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.40 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	8.8	11.0	6.5	7.9
Noise Factor $[\mathrm{dB}]$	1.07	1.14	0.58	0.79

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.9	0.635	161.1°	0.094	26.5°	4.736	52.2°	0.292	153.1°
4.2	0.869	-72.9°	0.049	42.0°	5.601	106.7°	0.507	-56.2°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.48
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad
Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $0.820+\mathrm{j} \cdot 0.720$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=5.80 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.6 \mathrm{~dB}$ and $\mathrm{G}_{2}=9.3 \mathrm{~dB}$. If the input power is 2.10 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.116+\mathrm{j} \cdot 0.117$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.80 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.2	11.8	6.5	7.1
Noise Factor $[\mathrm{dB}]$	0.95	1.12	0.69	0.79

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.4	0.611	-178.3°	0.071	27.3°	6.044	64.8°	0.157	-119.7°
3.9	0.881	-67.8°	0.046	45.2°	5.668	111.8°	0.510	-52.6°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.49
 Time allowed: $\mathbf{2}$ hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.005+\mathrm{j} \cdot 0.725$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=6.95 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.3 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.6 \mathrm{~dB}$. If the input power is 3.30 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.448+\mathrm{j} \cdot 0.484$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 15.55 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.2	11.4	5.8	7.1
Noise Factor $[\mathrm{dB}]$	1.02	1.10	0.52	0.85

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.1	0.619	-168.8°	0.066	29.3°	6.797	71.8°	0.180	-113.0°
1.4	0.977	-25.9°	0.019	72.5°	6.271	154.0°	0.536	-20.4°

a) Perform the μ-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAŞI

Faculty / Department: Electronics, Telecommunications and Information Technology
Domain: Telecommunication Technologies and Systems
Course : MDC - EDID407
Enrollment Year: \qquad 4 , Examination Session \qquad June \qquad / _ 2021

SUBJECT No.50
 Time allowed: 2 hours; All materials/equipments authorized

Instructor: conf. Radu Damian Student: \qquad Grupa \qquad

Note. Except where otherwise specified, assume 50Ω reference impedance.
Note. Any CAD solution (Matlab, Mathcad, ADS) must be accompanied by the submission of the script/project at the end of the examination.

1. For a normalized impedance equal to $1.060-\mathrm{j} \cdot 1.105$ compute the admittance ($\mathbf{1 p}$) and then plot on a Smith Chart (external circle and complex plane axes) the corresponding point (1p)
2. A circuit contains an ideal lossless coupler (matched on all ports with infinite isolation) with a coupling factor $\mathrm{C}=4.45 \mathrm{~dB}$ and two matched amplifiers $\mathrm{G}_{1}=9.9 \mathrm{~dB}$ and $\mathrm{G}_{2}=11.0 \mathrm{~dB}$. If the input power is 3.40 mW compute the output power (in mW) (2p)

3. A 50Ω source is connected to an unknown load resulting an reflection coefficient (as seen by the source) $\Gamma=0.036+\mathrm{j} \cdot 0.484$.
a) Compute the impedance of the unknown load. (1p)
b) Compute the reflection coefficient seen by the source if we connect to the 50Ω source two devices identical to the unknown load determined at a) in parallel. (1p)
c) For b) design the match with single-stub matching sections (shunt stub, both solutions). (1.5p)
d) Draw the match schematic. (0.5p)
4. In order to obtain an 16.90 dB gain (minimum) amplifier you must cascade two devices (amplifiers). You have available the four devices in the following table.

Device	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Gain $[\mathrm{dB}]$	9.9	11.0	6.0	7.2
Noise Factor $[\mathrm{dB}]$	1.03	1.11	0.53	0.75

a) Specify any two devices you can use to meet the amplifier requirements. (0.5p)
b) Of all the combinations that meet the requirements, which one has the minimum noise factor? Explain your choice. (1.5p)
5. The scattering parameters of a transistor at two frequencies are as follows:

$\mathrm{f}[\mathrm{GHz}]$	S_{11}		$\mathrm{~S}_{12}$		$\mathrm{~S}_{21}$		$\mathrm{~S}_{22}$	
	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
2.4	0.634	175.1°	0.083	31.6°	5.633	63.3°	0.286	167.3°
5.2	0.808	-88.2°	0.055	32.6°	5.302	91.3°	0.483	-66.9°

a) Perform the μ^{\prime}-test at both frequencies. ($\mathbf{1 . 5 p}$)
b) At which of the two frequencies the transistor has better stability? ($\mathbf{0 . 5 p}$)
c) At the frequency determined at \mathbf{b}) assume the transistor unilateral and compute the maximum transducer power gain (in dB). (1p)
d) Determine the error in the transducer power gain computation induced by the unilateral assumption (in dB). (1p)

